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Abstract

We study an approach for minimizing a convex quadratic function subject to two
quadratic constraints. This problem stems from computing a trust-region step for an
SQP algorithm proposed by Celis, Dennis and Tapia (1984) for equality constrained
optimization. Our approach is to reformulate the problem into a univariate nonlinear
equation ¢(u) = 0 where the function #(p) is continuous, at least piecewise differen-
tiable and monotone. Well-established methods then can be readily applied. We also
consider an extension of our approach to a class of non-convex quadratic functions
and show that our approach is applicable to reduced Hessian SQP algorithms. Nu-
merical results are presented indicating that our algorithm is reliable, robust and has
the potential to be used as a building block to construct trust-region algorithms for

small-sized problems in constrained optimization.
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1 Introduction

In this paper, we consider solving the following minimization problem

minimize ¢(d) = g7d + 3d"Bd, d e R" (1.1)
subject to Id]| < 6 (1.2)
and |ATd + A < 9, (1.3)

where B € R™" is symmetric, A € R™™ (m <n),g e R", h€ R™, § >0, § > 0, and
throughout this paper the norm || - || denotes the ¢, norm. In order to have a meaningful

feasible set, we assume that
0 > Opmin = min{||ATd + R : |4l < 8} (1.4)

Since only a global solution is of interest to us, the term “solution” always implies a global
solution.

The above problem comes from applying the successive quadratic programming (SQP)
method and a trust-region technique to minimize a function f (z) subject to the equality
constraints h(z) = 0. At the k-th iteration, we want to obtain the correction step di to
the current iterate z) by minimizing a quadratic model ¢(d) = ¢7d + d7 Bd/2 subject to
the linearized constraints ATd + h = 0, where g = V f(zx), B is the Hessian or an approx-
imate Hessian of the Lagrangian function with respect to z, A = Vh(z;) and h = h(zg).
Meanwhile, we also want to impose the trust-region restriction ||d|| < §. The linearized
constraints and the trust-region restriction are not necessarily compatible when # 0 (we
assume h # 0 in this paper), so in order to guarantee a non-empty feasible set, we replace
the requirement that the linearized constraints be zero by a condition that the norm of the
linearized constraints be within a given tolerance level. Eventually, we end up with Problem
(1.1)-(1.3). This approach was first proposed by Celis, Dennis and Tapia [2] and later it was
also used by Powell and Yuan [11] in their algorithm. For brevity, we shall call Problem
(1.1)-(1.3) the CDT problem in this paper.

From the first-order necessary conditions for the CDT problem (the constraint qualifi-

cation is satisfied as is pointed out by Yuan [14] because the feasible set is convex with
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nonempty interior), one can easily deduce that a solution d* to the CDT problem satisfies
(B + p*AAT + X*I)d* = —(g + u*Ah), (1.5)

where 4* > 0 and A\* > 0 are the multipliers of Problem (1.1)-(1.3). The vector d* is of

course feasible. In addition, one has the two complementarity conditions

A*=0 and |d']l<é or I >0 and ||d*| =3, (1.6)
p*=0 and ||[ATd"+h|[<8 or p*>0 and ||ATd" + A =0. (1.7)

Without the constraint (1.3), Problem (1.1)-(1.2) is the trust-region subproblem for un-
constrained optimization and its solution is well understood. The following theorem charac-
terizes global solutions of Problem (1.1)-(1.2). Is was proved independently by Gay [4] and

Sorensen [13].

Theorem 1.1 (Gay, Sorensen) A vector d* is a global solution to Problem (1.1)-(1.2) if
and only if |d*|| < 6 and for some \* > 0,

(B4 M D)d* = —g, X*(||d*|| = 6) =0, (1.8)

with B + A*I positive semi-definite. This \* is unique. Moreover, if B + A\*I is positive
definite, then d* is the unique global solution.

Based on this strong necessary and sufficient optimality condition, very effective Newton
type algorithms have been constructed for obtaining a solution or an approximate solution
of Problem (1.1)-(1.2) (see [6] for further references).

Unfortunately, with the presence of constraint (1.3) a similar necessary and sufficient
optimality condition no longer exists as was recently shown by Yuan (1987) [14]. The positive
semi-definiteness of the matrix (B+u*AAT+)*I) cannot be guaranteed for general symmetric
matrices B. Yuan gave examples demonstrating that this matrix can have one negative
eigenvalue when p* and A\* are unique and can even have two negative eigenvalues in an
unfavorable situation. The lack of a necessary and sufficient optimality condition and a

positive semi-definite Hessian of the Lagrangian (with respect to d) makes it much more



difficult to construct effective algorithms for solving this problem. Nevertheless, Yuan gives
sufficient conditions for a solution under the assumption that the Hessian of the Lagrangian
with respect to d is positive semi-definite at d*. The following is Yuan’s Theorem 2.5 in [14],

with a uniqueness result added by us.

Theorem 1.2 The conditions (1.5), (1.6), (1.7) and the positive semi-definiteness of the
matriz B + p* AAT + X1, where p* and \* are non-negative, are sufficient for a feasible d*
to be a solution of the CDT problem. Moreover, if the matriz B + u*AAT + X\*I is positive

definite, then the solution d* is unique.

Proof: We only prove the last statement which was not a part of Yuan’s original theorem.
Suppose that B + u*AAT + X*I is positive definite but d* is not unique. Then there exists
another global solution d such that q(zf) = g(d*). Since B+ p*AAT + X*[ is positive definite,

d* is the unique minimizer of the quadratic
,1’* A*
a(d) + S ATd + b1* + S|4,

Therefore,
wI AT+ R|P 4NN < wo [ AT+ RYE + 2|12 (1.9)
Since both d* and d are global solutions, from the complementarity conditions (1.6) and

(1.7), we have
WIATE + B = g AT+ B = w0 and X[ = X ) = A6,

which contradicts (1.9). Hence d* must be unique. O

While the problem of effectively solving the £;-norm CDT problem for a general sym-
metric matrix B is still open, some algorithms have been recently proposed for other norms
or for the £;-norm but in less general cases. For example, Celis et al [1] suggest solving a
modified CDT problem by restricting d to a two-dimensional subspace. Yuan [15] proposes a
dual algorithm for solving the CDT problem for a positive definite matrix B. His approach
is to solve the dual problem: maximize the Lagrangian function of the CDT problem subject

to the constraints that (i) its gradient with respect to d vanishes and (ii) the multipliers are
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non-negative. Eliminating the first constraint by substitution, he reduces the problem to
maximizing a quadratic concave function of two variables (multipliers) in the first quadrant.
His algorithm basically uses Newton’s method with a line search but a projected steepest
descent direction is used whenever Newton’s direction is not feasible. Moreover, special
care has to be taken near the boundary to ensure that the iterates stay in the first quad-
rant. To evaluate the objective function and its Hessian, the Cholesky factors of the matrix
B + uAAT 4 M have to be computed and stored.

In this paper, we propose a new approach for solving the CDT problem. Our approach
is to reformulate the problem into a univariate nonlinear equation ¢(u) = 0 where the
function ¢(u) is continuous, at least piecewise differentiable and monotonically decreasing.
Well-established methods for root finding then can be readily applied.

This paper is organized as follows. In Section 2, we show how the CDT problem with
a convex ¢(d) can be reduced to a well-behaved univariate nonlinear equation é(p) =0. In
Section 3, we show that our approach can be extended to the CDT problem with a class
of non-convex ¢(d) and give an important application. Numerical results are presented in
Section 4. We give some concluding remarks in the last section.

From now on, we shall assume that B is positive definite unless otherwise specified. We
have to point out that this is an unsatisfactory assumption since one of the advantages of
trust-region strategy is presumably its ability to handle indefinite Hessian (or approximate
Hessian) matrices. Nevertheless, when a BFGS type quasi-Newton update is used along with

measures to ensure positive definiteness, this assumption on B is still reasonable.
2 Problem reformulation

We first define two functions of the variables u > 0 and A > 0, namely,

H(p,A) = B+ pAAT + I € R™™, (2.1)
d(p,A) = —H(p,A)" (g + pAk) € R™, (2.2)



Then, we define three functions of the variable d € R™, namely,

J(d) = AATd+H) € R (239
9(d) = (P~ e R (2.4
8(d) = S(lATd+H[" -0 € R. (2.5)

It is evident that the constraints (1.2) and (1.3) are equivalent to ¢(d) < 0 and #(d) < 0,

respectively.
For simplicity, we shall adopt the following notational conventions. Whenever the vector
d(p, ) defined by (2.2) is substituted into the above three functions of d, we shall write

them as functions of (g, A) without changing their names. For example,
y(1, A) = y(d(p, N)) = A(ATd(s, X) + h).

Furthermore, if A is given as a function of p, we shall write all the above five functions as

functions of a single variable p without changing their names. For instance,

o(p) = ¢(d(p, Mp)))- (2.6)

It is worth noting that d = V41(d) and y(d) = V4é(d).
Our approach for solving the CDT problem is motivated by the following observation.
If the constraint (1.3) of the CDT problem is active (we will show that this is the case of

interest) and if we can define X as a function of y such that A\(u) always satisfies the feasibility

condition

lld(, A(u))ll < 6 (2.7)
and the first complementarity condition
A(pg) =0 or (g, A(p)) =0, (2.8)

(we will see that there is a natural way to define such a A(y)), then the solution of the

CDT problem reduces to solving the second complementarity condition (1.7), or equivalently

solving the univariate nonlinear equation

¢(p) = 0. (2.9)
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To construct the desired function A(x), we notice that by Theorem 1.1, the conditions
(2.2), (2.7) and (2.8) are the necessary and sufficient conditions for d(g,A) and A to be the

unique solution and the unique Lagrange multiplier, respectively, of the following problem:

minimize  ¢(d) + p¢(d), d€ R

(2.10)
subject to  ||d|| < 6.

This problem is in the standard form of a trust-region subproblem for unconstrained
optimization with its solution and multiplier depending on the parameter u. We will refer to
Problem (2.10) as P(u) to emphasize its dependence on the parameter u. Obviously, P(0)
is Problem (1.1)-(1.2) and it is natural to use P(o0) to denote the problem:

minimize  ¢(d), d € R™

(2.11)
subject to  ||d}} < é.

The following lemma is a direct consequence of Theorem 1.1 and the positive definiteness

assumption on B.

Lemma 2.1 Let A(p) be the multiplier corresponding to the constraint in P(u) , then \(u)
is a well-defined non-negative function of u for u > 0. Specifically

Au) = { A (212)

A(p), otherwise,

where A(u) > 0 is the implicit function defined by the equation (u,A) = 0. Conditions
(2.7) and (2.8) are satisfied by A(p). Moreover, the solution of P(u) is

d(p) = d(p, Mp))

which is also a well-defined function of u > 0.

Once the function A(u) is defined as in Lemma 2.1, we have the following sufficient

optimality condition.

Lemma 2.2 Let M) and d() be as in Lemma 2.1, and ¢(p) be defined by (2.6). If u* > 0
is such that ¢(u*) = 0, then d(p*) is the unique solution of the CDT problem.
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Proof: This is straightforward from Theorem 1.2 since d(u*) is obviously feasible, conditions
(1.5), (1.6) and (1.7) are all satisfied and B + p*AAT 4+ A\(p*)I is positive definite. O
We next show that the functions A(g), d(g) and ¢(p) are well-behaved.

Theorem 2.1 Let AM(p) and d(p) be as in Lemma 2.1, and ¢(u) be defined by (2.6).
1. The functions A(p), d(p) and ¢(pn) are all continuous in [0, +00).

2. The functions A(p), d(p) and ¢(p) are all differentiable in [0, +00) except possibly at
zeros of P(p,0) which are all isolated.

3. The derivatives of A(p), d(p) and é(u) are:

V() = { . w01 <0, (213)
~d(u)" H(p) y(p)/d(pw)T H(u) 7 d(n), ¥(u,0) >0,

d'(n) = —H(p) " y(u) — N () H(p) " d(p), p(p,0) #0, (2.14)

¢' (1) = —y()"H(p) "y (p) = N(w) y(p) H(u) " d(p), %(g,0) # 0. (2.15)

4. The function ¢(u) is monotonically decreasing in [0,+00).

Proof: From the definition of d(A) and ¢(u), we see that they are continuous and differen-
tiable if A(u) is continuous and differentiable. Hence it suffices to prove the continuity and
differentiability of A(x). Now let us assume pg € [0, 00).

First, we note that the function t(yu, 0) is continuous. If ¢)(po,0) < 0, then there exists a
neighborhood of 10 in [0, 00) such that %(y,0) < 0 for 4 in that neighborhood. By definition
(2.12), A(p) = 0 for x in that neighborhood. Thus, A(u) is continuous and differentiable at
fto, and X'(uo) = 0 which gives the expression for M () in (2.13) for the case ¥ (u,0) < 0.

Similarly, if ¥(po) > 0, then there exists a neighborhood of o in [0,00) such that
¥(#,0) > 0 for p in that neighborhood. By (2.12), A(z) = A(g) for p in that neighborhood.
In view of Theorem 1.1, there exists a unique Ao such that ¥ (g, Ag) = 0. Through direct

calculation, we have

Q% = —d(p, T H (8, )y (1, N,



and

P2 — 0T H V), 3.

The latter is negative at (po, Ao) since H(uo, Ao) is positive definite and
l|d(no, Ao)l| = & > 0.

Therefore A(u) is well-defined and differentiable in a neighborhood of py by the well-known

implicit function theorem (see [9], for example). In addition,

M) = — [31/)((9/;‘,/\)]_ 31/)(8/: A)

which gives the expression for A'(y) in (2.13) in the case ¥(u,0) > 0.

Let 0 be such that 1(40,0) = 0 and {y;}%2; be any sequence that converges to po. To
prove the continuity of A(¢) at po, we need to show that

Hm A(g;) = A(po) = 0.

J—o0

Without loss of generality, we assume that (p;,0) > 0 for all j > 1 (otherwise A(u;) = 0)

which implies
s, M DIl = Nl (o, )| = 6
for all j. Let j go to infinity and let Amay = limsup,_, ., A(y;). We have

l1d(105 Amax) || = [0, 0],

or equivalently,

(9 + HoAR) [H (p0,0)™* — H(Ho, Amax) *](g + 1o AR) = 0. (2.16)
There exists an orthogonal matrix @ such that
H(po,0) = Q" [diag(0:)i-,]Q
where 0; > 0, ¢ = 1,2,...,n. Consequently

H(pt0, Amax) = H(pt0,0) + MmaxI = Q7 [diag(0:)™; + AmaxI]Q.
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It follows from (2.16) that
“ (1 1 9
B ‘=0
(7~ i)
where p; is the i-th element of Q(g 4+ poAh). Since the p;’s cannot be all zero otherwise

d(0,0) = 0 which contradicts 1(p0,0) = 0, so we must have at least one index ¢ (1 < 7 < n)

such that
1 1

o g; + Am,ax

This implies Apnax = 0 and leads to

Jim M) = Apo) =0,

recalling that Amax = limsup,_,, A(g;) and A(x) > 0. Therefore, A(u) is continuous at .
So far we have proved that the function A(y) is continuous in [0, 00) and also differentiable
except possibly at points where ¥(u,0) = 0. Since (g, 0) is a non-constant rational function
which is real analytic in [0, 00), all its zeros have to be isolated by the well-known theory
of analytic functions. Hence A(x), and in turn d(p) = d(g, A(¢)) and é(p) = é(u, A(p))
which are differentiable with respect to both x> 0 and A > 0, are continuous and at least

piecewise differentiable.

Now we calculate the derivatives for d(u) and ¢(x) when 1(g,0) # 0. Differentiating
both sides of the equation

(B + pAAT + Np)D)d(p) = —(g + pAh)
and rearranging the terms, we have
H(p)d (1) = —y(p) — N (1)d(p)
which leads to the expression (2.14) for d'(s). For ¢(x), we have

¢'(1) = Vad(d(p)) d'(p) = y(u)"d' ()

which gives (2.15).
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Finally, we need to show that ¢(x) is monotonically decreasing in [0,00). It suffices
to show that ¢'(p) < 0 whenever the derivative exists because ¢'(y) is at least piecewise

differentiable. Substituting A'(x) into (2.15), we have

¢'(1) = —y(w) T H(1)'y(n) <0

when (g, 0) < 0. For ¢(g,0) > 0,

, 1 d TH -1 . 2
#() =~y H G y(w) (1 B d(ﬂ)TH((u()li)ld(ﬂgﬁ(#;jif(fl?()ﬂ)“ly.(u)) =0 e

by the Cauchy-Schwarz inequality. This completes the proof. O
Now we are ready to reformulate the CDT problem into a well-behaved univariate non-

linear equation.

Theorem 2.2 Let the function ¢(u) be given as in Theorem 2.1. If $(0) < 0, then d(0) is
the solution of the CDT problem; otherwise, there exists a p* > 0 such that ¢(u*) = 0 (which

implies that the constraint (1.3) is active). The vector d(u*) is the unique solution of the
CDT problem.

Proof: Since d(0) is already the solution of Problem (1.1)-(1.2), if ¢(0) < 0, then the
constraint (1.3) is also satisfied which implies that d(0) is the solution of the CDT problem.

Now let us assume ¢(0) > 0 and let d(co) denote a solution of P(co) (i.e., Problem 2.11).
In view of the definitions of 0y, and ¢(u) (see (1.4) and (2.6)), we have

$(d(c0)) = (024, — 6%)/2 < 0.

We first show ¢(u) < 0 for u large enough. Suppose that this not true, i.e., ¢(u) > 0 for all
p. Since d(u) is the solution of P(u) , we have

9(d(p)) + p(1) < q(d(c0)) + p(d(c0)).

It then follows that
q(d(p)) — q(d(0)) < pg(d(c0)) = u(02;, — 6%)/2.
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The right-hand side tends to —oo as p goes to +00. The left-hand side, however, is bounded
below by ¢(d(0)) — ¢(d(o0)). This is a contradiction. Therefore, () < 0 for u large enough.
In fact, ¢(p) < 0 for u > i where

= 2[q(d(0)) — q(d(0))]
62 — erzmn -

(2.18)

Since ¢(0) > 0, #(x) < 0 for some u > 0, and ¢(p) is continuous and monotonically
decreasing by Theorem 2.1, there must exist a g* > 0 such that ¢(p*) = 0. Finally, d(p*) is
the solution of the CDT problem by Lemma 2.2. O

We note that because of its monotonically decreasing property, ¢(¢) cannot have more
than one isolated zero. But it could have more than one zero. In that situation, there must
exist a unique interval in which ¢(x) is identically zero. This happens only if both constraints
are active and d* and y(d*) are linearly dependent as shown by Yuan [14]. From (2.17), we
see that ¢'(u) = 0 whenever d(p) and y(p) are linearly dependent.

It is of interest to interpret our formulation geometrically. Clearly, d(y) is a continuous
curve in R". The solution d(u*) is the point on the curve where the curve intersects the
surface of ¢(d) = 0 which is in general an elliptical cylinder because the rank of A is generally

less than n for equality constrained optimization problems.

3 Extension to non-convex quadratics

Since the second-order sufficient condition for equality constrained optimization only requires
the Hessian of Lagrangian with respect to z to be positive definite on the null space of
constraint gradients, the positive definiteness requirement for B is often (and rightly) viewed
as too strong. It is therefore desirable to extend our formulation to the CDT problem with

non-convex ¢(d), namely, B may be indefinite. The following theorem provides us such an

extension.

Theorem 3.1 Let the following two conditions hold:

1. The matriz B € R™" in the CDT problem is positive definite on the null space of AT,
i.e., pT Bp > 0 for all non-zero p € R™ such that ATp=0.

12



2. There exists a fi € [0, p*), where p* is the multiplier u* associated with the constraint

(1.8), such that B + pAAT is positive semi-definite.

Then the functions A(p), d(p) and ¢(p) can be defined for p > fi as in Theorem 2.1
and they are all continuous and at least piecewise differentiable in (ji,00). Moreover, ¢(u)

is monotonically decreasing in (fi,00). If ¢(ii) > 0, then there exist a u* > i such that
#(p*) =0 and the solution of the CDT problem is d(u*).

Proof: We omit the proof because it is analogous to the proof of Theorem 2.2 noting that
H{(y, M) is positive definite for all y in (ji,00) and all A in [0,00). O

Although the second condition in the theorem seems to be difficult to verify, this the-
orem does have an important application. It is well-known that in SQP type algorithms
for constrained optimization, the reduced Hessian on the null space of the active constraint
gradients is the essential piece of the second-order derivative information for fast local con-
vergence (see [10] for an explanation). It is a very popular approach to just use the reduced
Hessian to generate SQP steps (see [3] and [8], to cite a few examples). The advantages are:
(i) a smaller matrix is stored and handled and (ii) near a solution the reduced Hessian is
usually positive definite. Let us assume now that a reduced Hessian approach is used in the
CDT problem where A is of full rank, then we have B = ZMZ7T where M € R™ ™ is an
approximation to the reduced Hessian and is positive definite and Z € R™*(™=™) is a basis
for the null space of AT (assuming that A is of full rank). It is easy to verify that such a
matrix B satisfies the two conditions in Theorem 3.1 with fi = 0. So if d(0) is not a solution,
then the CDT problem can be reduced to the zero finding problem é(p) = 0.

Unfortunately, it is not possible to directly extend our approach to general symmetric
matrices B. This is because in our approach, H(u,)) is always kept positive definite, if
H(p*,X*) is in fact indefinite, as it may be, and if d* and y(d*) are linearly independent
which implies that (u*, \*) is unique, then there is no way that the necessary condition (1.5)

can be satisfied by a positive definite matrix H(y, ).
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4 Numerical Tests

We have reformulated the CDT problem with a convex quadratic objective function ¢(d) into
a problem of zero-finding for an at least piecewise differentiable and monotonically decreasing
function ¢(p). The zero-finding problem for univariate functions is perhaps among the oldest
problems considered in numerical analysis. There are many well-established methods for
solving this problem with guaranteed convergence.

We have found that instead of solving ¢(p) = 0, it is generally easier to solve the equiv-

alent equation ®(x) = 0, where

1
O(p) = m s (4.1)
The function ®(u) is still a monotone (this time increasing) function with the same
smoothness properties as ¢(x). It is easy to verify that ®'(u) = —¢'(u)/||ATd(x) + &||®. The
nice thing about ®(yx) is that it usually exhibits a lower degree of nonlinearity than ¢(u)
does. Figure 1 shows the behavior of the two functions for a random problem. It has been

observed from numerous examples that this kind of phenomenon is not atypical.

Figure 1: Functions @ (solid line) and ¢ (dashed line) vs. Variable u
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4.1 An Implementation of Newton’s method

We have implemented an algorithm for solving ®(p) = 0, which is basically Newton’s method

with a form of safeguarding, as given below.

Algorithm 1 (Solving ®(x) = 0) Given tolerance 71, set p =0, p, =0, p, = co.
Step 1 Solve P(p) to obtain d(u) and evaluate ®(u).

Step 2 If p =0 and ®(u) > 0, or || ATd(p) + k|| — 0]/0 < 7, let d* = d(u) and ezit.
Step 3 If ®(u) <0, then py = p and @ = ®(p); else p, = p and O, = ®(p).

Step 4 Compute the Newton step: p:=p — ®(u)/d'(p).

Step 5 If u & (pe, ptr), use the Regula Falsi step: p:= pg — @o(ptr — po)/(®r — ®y).

Step 6 Go to Step 1.

A cause of concern about the above algorithm is probably the need to solve the standard
trust-region subproblem P(u) which may be considered to be expensive. The solution to
P(p) is now well-understood and very efficient methods have been developed during the last
decade (see [6] and [7], for example), especially for positive definite matrices B. The method

perhaps most often used is to solve the equation

1
(e DI

for A, while u is fixed, using Newton’s method which was proposed by Reinsch [12] and

W(p, \) = —2=0, (4.2)

Hebden [5) independently. A basic algorithm for solving the above equation can be found in
[7, p.p.47], which involves the Cholesky factorization of H(y,A). In our case, since H(g,A)
is positive definite, the success of this algorithm is guaranteed. In practice, it has been
reported [6] that on the average less than two iterations (factorizations) are needed to obtain
an approximate solution to A(y). Since there is no need for a line search in our algorithm
and no need for special measures to maintain feasibility as are required by Yuan’s algorithm

[15], the need for solving P(y) does not seem to be a formidable overhead.
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We have used Newton’s method to solve the problem P(u) (i.e., ¥(u,A) = 0 for a fixed
p) as given in Moré and Sorensen’s paper [7, p.p.47], but we have added the restriction g > 0

and used a practical stopping criterion. The algorithm is as follows.

Algorithm 2 (Solving ¥(u, ) =0 for a fixed p) Given u and tolerance 15, set A.
Step 1 Let H = B+ uAAT + M and solve Hd = —g for d.

Step 2 If A =0 and ||d|| < 8, or|||d|| — 6|/6 < 72, then let d* = d and ezit.

Step 3 Compute the restricted Newton step:

-6
A = max (0, A+ d’d_|id ) .

dTH-'d §

Step 4 Go to Step 1.

Interested readers are referred to Moré and Sorensen’s paper [7] for more details about
the trust-region subproblem for unconstrained optimization.

We note from (2.15) that in order to compute the derivative ®'(), the vectors H(p)~td(u)
and H(pu)"'y(p) are needed, which can be readily computed if the Cholesky factor of H(u)
is stored while solving P(u) . In fact, the first vector is already available after solving P(u) .

When both the constraints (1.2) and (1.3) are binding, our algorithm can be roughly
summarized as follows. By the complementarity, CDT problem reduces to the nonlinear

system of two equations with two variables

Y(p,A) = 0,
O(p,A) = 0.

We eliminate the variable A by solving the first equation while fixing u. After substitution,
we reduce the above system into a single equation ®(u, A(¢)) = 0. Fortunately, both the
first equation (for fixed ) and the second equations (after the substitution A = A(u)) are
well-behaved monotone functions and easy to solve.

Algorithm 1 and 2 have been programmed in Matlab and run on a SUN 3/160 workstation

network at Rice University with a machine epsilon about 2.22 x 10718,
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4.2 Results for Yuan’s Problems

In his paper [15], Yuan used five small test problems in testing his algorithm (see his paper
for details). We ran our algorithm on these five problems, called Y1 through Y5. We chose
the stopping tolerances as 7, = 10~3 and 7, = 0.17;, respectively, for Algorithm 1 and 2. The
final solutions we obtained have at least three and often four significant digits in agreement
with Yuan’s solutions. We tabulate the number of Cholesky factorizations of H{(u, A), which
is the leading work in both ours and Yuan’s algorithms, in Table 1. Because ours and Yuan’s
results were obtained on different machines with different stopping criteria, Table 1 should

not be considered as a rigorous comparison, but rather a reasonable indicator.

Table 1: Number of Factorizations for Yuan’s Problems

Test Problem | Y1 |Y2|Y3|Y4]|Y5
Yuan’s Algorithm | 8 [ 6 [ 11 | 14 | 11

Our Algorithm 712121510

From the table, we can see that for Problems Y2 and Y3 for which only one of the
two constraints is active (i.e., either 4 = 0 or A = 0), our algorithm appears to be much
faster than Yuan’s. This probably should not be too much of a surprise, because unlike
Yuan’s algorithm, which searches in both 4 and A directions simultaneously, our algorithm
searches along the two directions alternatively. For the remaining three problems for which
both constraints are active, our algorithm seems to be comparable with Yuan’s algorithm in

terms of number of matrix factorizations.

4.3 Results for Random Problems

Randomly generated problems are also used in our preliminary numerical experiments. We
use the Matlab M-file “rand” to generate normally distributed random numbers to form
the needed matrices and vectors: A, B,g and h. To ensure the positive definiteness of B,

we first generate a n x n matrix C' and then let B = CTC. The trust-region radius § is

17



also generated randomly but the absolute value is taken to ensure positivity. To ensure the
constant 8 > O, (see (1.4)), we let  be the best decrease on ||ATd + k|| in the steepest
descent direction within the trust-region ||d|| < §, as was suggested by Celis, Dennis and
Tapia [2]. More specifically,

0 = ||AT(~aAR) + A

where

. 6§ KT(ATA)R
o= MR\ AR RT(AT AR )

We mention that another existing way of choosing  is
0 = min{||ATd + h| : ||d|| < ré}

for some r < 1, proposed by Powell and Yuan [11].

Our test results on five random problems, R1 to R5, with various sizes are presented in
Table 2. To see how long a step is and how much reduction in the objective function as well
as in the linearized constraint is achieved , we include in the table the four quantities ¢(d*)
(note q(0) = 0), ||d*||, ||2|| and ||ATd* + h|| where d* is the computed solution. Listed in
the table are also the number of outer iterations and the number of Cholesky factorization
Nyqc needed for Algorithm 1 to reach a solution for each problem. We note that the number
Nyq. is also equal to the accumulated total number of inner iterations taken by Algorithm 2

embedded in Algorithm 1.

Table 2: Results for Random Problems

Problem | n:m | q@) | Jlall | 4l | 1ATd" + kil | Tter | N
R1 4.2 |-0.02352 | 0.01449 | 0.30307 0.29380 2 6
R2 8:4 | -1.05896 | 1.05458 | 2.52440 1.85602 4 12
R3 12:6 | -0.28778 | 0.11656 | 2.20569 2.11969 3 9
R4 16 8 | —1.74549 | 0.43507 | 2.67182 2.33413 3 9
R5 20 : 10 | -1.26240 | 0.81427 | 3.04088 2.32549 3 10
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Many more experiments with random problems have been done. The set of problems
presented in Table 2 is just a small sample. The choice of this sample is such that both
constraints (1.2) and (1.3) are binding but otherwise is arbitrary. We have found that it
is often easier to solve problems with only one constraint binding instead of two. We also
have observed from our computational experiences that the extent of difficulty in solving a
CDT problem by our algorithm is mainly dictated by, aside from the conditioning of involved

matrices, the values of the constants # and § and their relation.

4.4 Accuracy vs. Computational work

From the nature of the trust-region strategy as a device of enforcing global convergence and
also from theoretical results developed for trust-region algorithms in unconstrained optimiza-
tion, it is safe to say that in general one need not solve the CDT problem to a high accuracy.
A reasonably good approximate solution is all we are asking for at least from the practical
point of view. Therefore, we believe that our stopping criteria can be further relaxed without
affecting the practical performance of the trust-region algorithm. In doing so, the effort re-
quired to obtain a satisfactory step can generally be significantly reduced. To illustrate this,
we ran our algorithm on a random problem for stopping tolerances 7, = 1072,1072,107! and
T2 = 0.17y. The data for this problem are n =10, m =5, § = 1, # = 3 and ||A|| = 3.704085.
The relevant quantities obtained from the algorithm at termination are given in Table 3,

where again Nj,. denotes the number of Cholesky factorization.

Table 3: Effects of Stopping Tolerances

Tolerance | ¢(d) Il |ATd + A © A Nyac
. =1073 | -1.17216 | 1.00000 | 3.00003 | 0.52841 | 0.05215 | 12
71 = 1072 | -1.15070 | 1.00019 | 2.98652 | 0.53393 | 0.05168 | 10
1 = 1071 | -0.84760 | 1.00042 2.80405 0.61749 | 0.07847 6
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5 Concluding remarks

Compared with Yuan’s algorithm [15], the only existing one for computing an £;-norm CDT
trust-region step in all of R™ that we are currently aware of, our algorithm is conceptually
simpler because zero finding for a monotone function of a single variable is better understood
than locating a maximizer in the first quadrant of a concave function of two variables. The
limited numerical experiments do seem to confirm that our algorithm is indeed reliable and
robust as expected.

As far as efficiency is concerned, we believe that methods of any kind, including ours, for
solving the n-dimensional £;-norm CDT problem are not likely to be cheap in the context
of computing an iterative step for a trust-region algorithm for which the CDT problem is
merely a subproblem that has to be solved at each iteration. On the other hand, solving the
CDT problem supposedly produces better iterative steps and therefore enhences robustness
of global convergence. From our computational experiments, we have been led to believe
that our approach can produce good steps for small-sized problems (say, n < 20) at very
affordable costs, given the fact that high accuracy in computed steps is not needed in trust-
region algorithms.

To summarize, we conclude that our method has the potential to be used as a build-
ing block, along with a BFGS-type (reduced or full) Hessian approximation technique, to
construct reliable and robust trust-region algorithms for small-sized problems in constrained

optimization.
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